A device and an algorithm for the separation of visible and near infrared signals in a monolithic silicon sensor

نویسندگان

  • Giacomo Langfelder
  • Thomas Malzbender
  • Antonio Longoni
  • Federico Zaraga
چکیده

The Transverse Field Detector (TFD) is a filter-less and demosaicking-less color sensitive device that easily allows the design of more than three color acquisition channels at each pixel site. The separation of light into different wavelength bands is based on the generation of transverse electric fields inside the device depleted region, and exploits the properties of the Silicon absorption coefficient. In this work we propose such a device for the joint capture of visible and near infrared (NIR) radiation, for possible applications in videoconferencing and 3D imaging. In these applications the detector is used in combination with suitably generated NIR structured light. The information of the fourth acquisition channel, mainly capturing NIR signals, can be used both for sampling NIR light intensity and for subtracting unwanted NIR crosstalk from visible channels thus avoiding the need for the IR-blocking filter. Together with the presentation of a 4-channel sensor, a suitable algorithm for the processing of signals generated in the visible and infrared bands is described. The goal of the algorithm is to minimize the crosstalk of NIR radiation inside the visible channels and, simultaneously, to maintain good color reproduction and noise performance for the sensor, while holding a good sensitivity of the NIR channel up to 900 nm. The analysis indicates that the algorithm reduces the crosstalk of infrared signals inside R, G and B channels from 31%, 12% and 5% respectively to less than 2%. Concerning noise propagation, the worst coefficient of the color conversion matrix (CCM) is -2.1, comparable to those obtained for CCM of Bayer Color Filter Arrays.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

A Monolithic Ge-on-Si CMOS Imager for Short Wave Infrared

Introduction Imaging in the Short Wave Infrared (SWIR) band (1-2μm) enables a broad range of applications in medical and dental imaging, industrial inspection and night vision. The night sky emits substantially more light in this band than in the visible. The spectral response of silicon detectors is limited to λ < ~1μm. SWIR imagers have traditionally been built using arrays of compound semico...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering

In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011